All wheels with two missing consecutive spokes are chromatically unique

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hypergraphs with pendant paths are not chromatically unique

In this note it is shown that every hypergraph containing a pendant path of length at least 2 is not chromatically unique. The same conclusion holds for h-uniform r-quasi linear 3-cycle if r ≥ 2.

متن کامل

Chromatically Unique Multibridge Graphs

Let θ(a1, a2, · · · , ak) denote the graph obtained by connecting two distinct vertices with k independent paths of lengths a1, a2, · · · , ak respectively. Assume that 2 ≤ a1 ≤ a2 ≤ · · · ≤ ak. We prove that the graph θ(a1, a2, · · · , ak) is chromatically unique if ak < a1 + a2, and find examples showing that θ(a1, a2, · · · , ak) may not be chromatically unique if ak = a1 + a2.

متن کامل

Classes of chromatically unique graphs

Borowiecki, M. and E. Drgas-Burchardt, Classes of chromatically unique graphs, Discrete Mathematics Ill (1993) 71-75. We prove that graphs obtained from complete equibipartite graphs by deleting some independent sets of edges are chromatically unique. 1. Preliminary definitions and results In this paper we consider finite, undirected, simple and loopless graphs. Two graphs G and H are said to b...

متن کامل

On Friendly Index Sets of Broken Wheels with Three Spokes

Let G be a graph with vertex set V(G) and edge set E(G), and let A be an abelian group. A labeling f : V(G) ....... A induces a edge labeling r : E{G) ....... A defined by r(xy) = f(x) + f(y) for each xy E E. For each i E A, let vJ(i) card{v E V(G) : f(v) i} and eJ(i) card{e E E(G) : r(e) i}. Let c(J) {leJ(i) eJ(j)1 : = = (i,j) E A x A}. A labeling f of a graph G is said to be A-friendly if IVJ...

متن کامل

The chromaticity of wheels with a missing spoke II

In the previous paper, it was shown that the graph U. ÷ 1 obtained from the wheel W n ÷ 1 by deleting a spoke is uniquely determined by its chromatic polynomial if n >i 3 is odd. In this paper, we show that the result is also true for even n >~ 4 except when n = 6 in which case, the graph W given in the paper is the only graph having the same chromatic polynomial as that of U 7. The relevant to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1998

ISSN: 0012-365X

DOI: 10.1016/s0012-365x(96)00288-9